Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cell Death Discov ; 8(1): 491, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2160194

ABSTRACT

The effects of indole-3-carbinol (I3C) compound have been described deeply as antitumor drug in multiple cancers. Herein, I3C compound was tested for toxicity and antiviral activity against SARS-CoV-2 infection. Antiviral activity was assessed in vitro in both in VeroE6 cell line and human Lung Organoids (hLORGs) where I3C exhibited a direct anti-SARS-CoV-2 replication activity with an antiviral effect and a modulation of the expression of genes implicated in innate immunity and inflammatory response was observed at 16.67 µM. Importantly, we further show the I3C is also effective against the SARS-CoV-2 Omicron variant. In mouse model, instead, we assessed possible toxicity effects of I3C through two different routes of administration: intragastrically (i.g.) and intraperitoneally (i.p.). The LD50 (lethal dose 50%) values in mice were estimated to be: 1410 and 1759 mg/kg i.g.; while estimated values for i.p. administration were: 444.5 mg/kg and 375 mg/kg in male and female mice, respectively. Below these values, I3C (in particular at 550 mg/kg for i.g. and 250 mg/kg for i.p.) induces neither death, nor abnormal toxic symptoms as well as no histopathological lesions of the tissues analysed. These tolerated doses are much higher than those already proven effective in pre-clinical cancer models and in vitro experiments. In conclusion, I3C exhibits a significant antiviral activity, and no toxicity effects were recorded for this compound at the indicated doses, characterizing it as a safe and potential antiviral compound. The results presented in this study could provide experimental pre-clinical data necessary for the start of human clinical trials with I3C for the treatment of SARS-CoV-2 and beyond.

2.
Int J Mol Sci ; 23(16)2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-1997648

ABSTRACT

The aims of our study are to: (i) investigate the ability of nicotine to modulate the expression level of inflammatory cytokines in A549 cells infected with SARS-CoV-2; (ii) elucidate the ultrastructural features caused by the combination nicotine+SARS-CoV-2; and (iii) demonstrate the mechanism of action. In this study, A549 cells pretreated with nicotine were either exposed to LPS or poly(I:C), or infected with SARS-CoV-2. Treated and untreated cells were analyzed for cytokine production, cytotoxicity, and ultrastructural modifications. Vero E6 cells were used as a positive reference. Cells pretreated with nicotine showed a decrease of IL6 and TNFα in A549 cells induced by LPS or poly(I:C). In contrast, cells exposed to SARS-CoV-2 showed a high increase of IL6, IL8, IL10 and TNFα, high cytopathic effects that were dose- and time-dependent, and profound ultrastructural modifications. These modifications were characterized by membrane ruptures and fragmentation, the swelling of cytosol and mitochondria, the release of cytoplasmic content in extracellular spaces (including osmiophilic granules), the fragmentation of endoplasmic reticulum, and chromatin disorganization. Nicotine increased SARS-CoV-2 cytopathic effects, elevating the levels of inflammatory cytokines, and inducing severe cellular damage, with features resembling pyroptosis and necroptosis. The protective role of nicotine in COVID-19 is definitively ruled out.


Subject(s)
Nicotine , SARS-CoV-2 , A549 Cells , COVID-19 , Cell Survival/drug effects , Cytokines/metabolism , Humans , Interleukin-6 , Lipopolysaccharides , Nicotine/adverse effects , Nicotine/pharmacology , Tumor Necrosis Factor-alpha
3.
J Clin Med ; 11(7)2022 Apr 01.
Article in English | MEDLINE | ID: covidwho-1776260

ABSTRACT

As of 27 March 2022, the ß-coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 487 million individuals worldwide, causing more than 6.14 million deaths. SARS-CoV-2 spreads through close contact, causing the coronavirus disease 2019 (COVID-19); thus, emergency lockdowns have been implemented worldwide to avoid its spread. COVID-19 is not the first infectious disease that humankind has had to face during its history. Indeed, humans have recurrently been threatened by several emerging pathogens that killed a substantial fraction of the population. Historical sources document that as early as between the 10th and the 6th centuries BCE, the authorities prescribed physical-social isolation, physical distancing, and quarantine of the infected subjects until the end of the disease, measures that strongly resemble containment measures taken nowadays. In this review, we show a historical and literary overview of different epidemic diseases and how the recommendations in the pre-vaccine era were, and still are, effective in containing the contagion.

4.
Front Immunol ; 13: 836495, 2022.
Article in English | MEDLINE | ID: covidwho-1775669

ABSTRACT

As the COVID19 pandemic continues to spread and vaccinations are administered throughout the world at different rates and with different strategies, understanding the multiple aspects of the immune response to vaccinations is required to define more efficient vaccination strategies. To date, the duration of protection induced by COVID19 vaccines is still matter of debate. To assess whether 2-doses vaccination with BNT162b2 mRNA COVID-19 vaccine was sufficient to induce a persistent specific cellular immune response, we evaluated the presence of SARS-COV2 Spike-specific B and T lymphocytes in 28 healthcare workers 1 and 7 months after completing the vaccination cycle. The results showed that at 7 months after second dose a population of Spike-specific B lymphocytes was still present in 86% of the immunized subjects, with a higher frequency when compared to not-immunized controls (0.38% ± 0.07 vs 0.13% ± 0.03, p<0.001). Similarly, specific CD4+ and CD8+ T lymphocytes, able to respond in vitro to stimulation with Spike derived peptides, were found at 7 months. These results confirm that vaccination with BNT162b2 is able to induce a specific immune response, potentially long lasting, and could be helpful in defining future vaccination strategies.


Subject(s)
COVID-19 Vaccines , COVID-19 , BNT162 Vaccine , COVID-19/prevention & control , Humans , Immunity, Cellular , RNA, Messenger/genetics , RNA, Viral , SARS-CoV-2 , Vaccination
5.
Med Lav ; 112(6): 496-505, 2021 Dec 23.
Article in English | MEDLINE | ID: covidwho-1595733

ABSTRACT

OBJECTIVE: To evaluate the psychological state of healthcare workers (HCWs) in the field of rehabilitation during the COVID-19 pandemic. METHODS: Cross-sectional observational study. Sample of 334 HCWs including: nurses, medical doctors, therapists, scientists, and clerical workers working at the IRCCS San Raffaele Roma rehabilitation hospital during the second wave of the COVID-19 pandemic. Anonymous web-based questionnaire included 14-item Resilience Scale, Brief-COPE, Hospital Anxiety Depression Scale, Fear of COVID-19 Scale. Occupational and sociodemographic characteristics. RESULTS: High levels of resilience, low levels of anxiety, depression, and fear were observed in the study population; the most frequently used coping strategies in the Brief-COPE were acceptance, planning, and active coping. Specifically, 87% of the participants reported a moderate to high level of resilience, with the highest level observed in nurses while physicians show the lowest level. HCWs showed symptoms of anxiety (29%), depressive symptoms (10%), and fear caused by the COVID-19 pandemic (44%). Statistically significant differences were observed between different occupations for fear (p <0.05) and resilience (p <0.01). Levels of anxiety and fear appeared to be higher in female and younger workers. The latter group - who also reported higher levels of depression - showed lower levels of resilience. CONCLUSIONS: In our study hospital and non-hospital workers show different emotional, cognitive, and behavioural resources when facing stressful situations, like in the case of the SARS-CoV-2 pandemics. Our results support the role of resilience and the proper use of problem-focused and emotion-focused coping strategies as protective factors from psychological distress.


Subject(s)
COVID-19 , Pandemics , Adaptation, Psychological , Anxiety/epidemiology , Cross-Sectional Studies , Depression/epidemiology , Female , Health Personnel , Humans , SARS-CoV-2
6.
ERJ Open Res ; 7(2)2021 Apr.
Article in English | MEDLINE | ID: covidwho-1183500

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has a variable degree of severity according to underlying comorbidities and life-style. Several research groups have reported an association between cigarette smoking and increased severity of COVID-19. The exact mechanism of action is largely unclear. We exposed low angiotensin-converting enzyme 2 (ACE2)-expressing human pulmonary adenocarcinoma A549 epithelial cells to nicotine and assessed ACE2 expression at different times. We further used the nicotine-exposed cells in a virus neutralisation assay. Nicotine exposure induces rapid and long-lasting increases in gene and protein expression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor ACE2, which in turn translates into increased competence for SARS-CoV-2 replication and cytopathic effect. These findings show that nicotine worsens SARS-CoV-2 pulmonary infection and have implications for public health policies.

7.
Cell Death Dis ; 12(4): 310, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149708

ABSTRACT

SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.


Subject(s)
COVID-19 Drug Treatment , COVID-19/enzymology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Adult , Aged , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Endosomal Sorting Complexes Required for Transport/metabolism , Female , Humans , Indoles/pharmacology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Vero Cells
8.
Molecules ; 26(1)2020 Dec 28.
Article in English | MEDLINE | ID: covidwho-1043025

ABSTRACT

(1) Background: Nicotine is implicated in the SARS-COV-2 infection through activation of the α7-nAChR and over-expression of ACE2. Our objective was to clarify the role of nicotine in SARS-CoV-2 infection exploring its molecular and cellular activity. (2) Methods: HBEpC or si-mRNA-α7-HBEpC were treated for 1 h, 48 h or continuously with 10-7 M nicotine, a concentration mimicking human exposure to a cigarette. Cell viability and proliferation were evaluated by trypan blue dye exclusion and cell counting, migration by cell migration assay, senescence by SA-ß-Gal activity, and anchorage-independent growth by cloning in soft agar. Expression of Ki67, p53/phospho-p53, VEGF, EGFR/pEGFR, phospho-p38, intracellular Ca2+, ATP and EMT were evaluated by ELISA and/or Western blotting. (3) Results: nicotine induced through α7-nAChR (i) increase in cell viability, (ii) cell proliferation, (iii) Ki67 over-expression, (iv) phospho-p38 up-regulation, (v) EGFR/pEGFR over-expression, (vi) increase in basal Ca2+ concentration, (vii) reduction of ATP production, (viii) decreased level of p53/phospho-p53, (ix) delayed senescence, (x) VEGF increase, (xi) EMT and consequent (xii) enhanced migration, and (xiii) ability to grow independently of the substrate. (4) Conclusions: Based on our results and on evidence showing that nicotine potentiates viral infection, it is likely that nicotine is involved in SARS-CoV-2 infection and severity.


Subject(s)
COVID-19/pathology , Epithelial Cells/drug effects , Nicotine/adverse effects , Respiratory System/drug effects , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cell Line , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Epithelial Cells/virology , Humans , Receptors, Nicotinic/metabolism , Respiratory System/virology , SARS-CoV-2/pathogenicity , Severity of Illness Index , Signal Transduction/drug effects , Smoking/adverse effects , alpha7 Nicotinic Acetylcholine Receptor/metabolism
9.
Molecules ; 26(1):101, 2021.
Article in English | ScienceDirect | ID: covidwho-984541

ABSTRACT

(1) Background: Nicotine is implicated in the SARS-COV-2 infection through activation of the α7-nAChR and over-expression of ACE2. Our objective was to clarify the role of nicotine in SARS-CoV-2 infection exploring its molecular and cellular activity. (2) Methods: HBEpC or si-mRNA-α7-HBEpC were treated for 1 h, 48 h or continuously with 10−7 M nicotine, a concentration mimicking human exposure to a cigarette. Cell viability and proliferation were evaluated by trypan blue dye exclusion and cell counting, migration by cell migration assay, senescence by SA-β-Gal activity, and anchorage-independent growth by cloning in soft agar. Expression of Ki67, p53/phospho-p53, VEGF, EGFR/pEGFR, phospho-p38, intracellular Ca2+, ATP and EMT were evaluated by ELISA and/or Western blotting. (3) Results: nicotine induced through α7-nAChR (i) increase in cell viability, (ii) cell proliferation, (iii) Ki67 over-expression, (iv) phospho-p38 up-regulation, (v) EGFR/pEGFR over-expression, (vi) increase in basal Ca2+concentration, (vii) reduction of ATP production, (viii) decreased level of p53/phospho-p53, (ix) delayed senescence, (x) VEGF increase, (xi) EMT and consequent (xii) enhanced migration, and (xiii) ability to grow independently of the substrate. (4) Conclusions: Based on our results and on evidence showing that nicotine potentiates viral infection, it is likely that nicotine is involved in SARS-CoV-2 infection and severity.

10.
J Virol Methods ; 287: 114008, 2021 01.
Article in English | MEDLINE | ID: covidwho-907063

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the COVID-19 pandemic. Although other diagnostic methods have been introduced, detection of viral genes on oro- and nasopharyngeal swabs by reverse-transcription real time-PCR (rRT-PCR) assays is still the gold standard. Efficient viral RNA extraction is a prerequisite for downstream performance of rRT-PCR assays. Currently, several automatic methods that include RNA extraction are available. However, due to the growing demand, a shortage in kit supplies could be experienced in several labs. For these reasons, the use of different commercial or in-house protocols for RNA extraction may increase the possibility to analyze high number of samples. Herein, we compared the efficiency of RNA extraction of three different commercial kits and an in-house extraction protocol using synthetic ssRNA standards of SARS-CoV-2 as well as in oro-nasopharyngeal swabs from six COVID-19-positive patients. It was concluded that tested commercial kits can be used with some modifications for the detection of the SARS-CoV-2 genome by rRT-PCR approaches, although with some differences in RNA yields. Conversely, EXTRAzol reagent was the less efficient due to the phase separation principle at the basis of RNA extraction. Overall, this study offers alternative suitable methods to manually extract RNA that can be taken into account for SARS-CoV-2 detection.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19/diagnosis , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Diagnostic Tests, Routine , Genes, Viral/genetics , Humans , Limit of Detection , Pharynx/virology , RNA, Viral/analysis , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics
11.
Cell Death Discov ; 6: 49, 2020.
Article in English | MEDLINE | ID: covidwho-605982
SELECTION OF CITATIONS
SEARCH DETAIL